
22 The Delphi Magazine Issue 47

A Web Server Text
Difference Engine
by Paul Warren

Last month we extended Steve
Troxell’s TCGI component to

handle file uploads. File uploads
add an extra dimension to CGI pro-
gramming with Delphi. This time,
as promised, we will explore that
extra dimension by creating a
useful web server utility that
depends on the ability to accept
files from a client browser.

The most common use of file
uploads on the web is to allow a
user to submit an image file, along
with a message, to a newsgroup or
guestbook. There are many other
potential uses, though, especially
when you consider corporate
intranets and personal infranets as
well as the web.

Think how useful it would be to
be able to submit a text file to a
corporate server and have it con-
verted to a web page complete
with the company logo and format-
ting. Other ideas include spelling
and grammar checking, an image
catalog and an html source code
archive, complete with syntax
highlighting.

There are so many possibilities
that deciding what utility would
best illustrate the value of file
uploads wasn’t easy. I finally set-
tled on a text file difference engine.
Besides being illustrative it should
also prove useful.

Extending TCGI Further
While the TCGI component can
accept a single file from an upload
capable browser, a text file differ-
ence engine requires two files: a
base revision and a comparison
revision. We’ll need to do a little
more work on TCGI before
continuing.

I mentioned last month that the
provision for multiple file uploads
given in RFC 1867 had not been
implemented. While it’s true we
can’t submit multiple files from
one <INPUT> element there is

A Word About Infranets
So what is an infranet? When you use a personal web server to serve content
on a small, personal, network (one or two PCs) I call that an infranet (from
infra, smaller than or below). Other than size there is nothing to distinguish
an infranet from a corporate intranet or, for that matter, the internet.

Installing a personal web server is all about bringing the power of internet
technologies to your own desktop. I use O’Reilly’s Website as my personal
web server because of its modest 4.7Mb compressed size. Very modest when
compared to Microsoft’s 27Mb behemoth, Personal Web Server.

If you don’t already have a personal web server on your PC, I have included
a description of how to set up O’Reilly’s Website on this month’s companion
disk. For a description of how to set up MS Personal Web Server see Eyal
Hirsch’s article Implementing Active Server Pages in Issue 42.

nothing to stop us from putting
multiple <INPUT> elements on a
form. Although quite different from
the multiple uploads suggested in
the RFC, this suits our needs here
perfectly.

In a way TCGI already handles
multiple files uploaded this way.
Both files get uploaded correctly,
but unfortunately there will only
be FILENAME and TEMPFILE form vari-
ables for the last file uploaded.
This is a common problem with
some html form elements (for
example the <SELECT MULTI=YES>
element) that submit multiple
values: they are all submitted with
the same name. We will need to
find a way to distinguish between
these variables.

The easiest way to accomplish
this is to increment a counter and
tack the number on the end of the
variable name. Listing 1 shows the
code for the modified LoadMulti
CGIUserData method of TCGI. Note
also that I have modified the code
to accommodate Netscape 3’s
rogue behavior that I described
under the heading Postscript in the
last article.

The Difference Engine
With these minor changes out of
the way let’s start building our dif-
ference engine. A difference engine
needs to compare a base revision

with a comparison revision. Lines
common to both revisions must be
reproduced without change. Any
line in the base revision that is not
in the comparison revision needs
to be identified and marked as
deleted. Similarly, any line found in
the comparison revision that was
not in the base revision needs to be
marked as added.

To implement the difference
engine we will declare a class
TDifference with three class fields
of type TStrings. These fields hold
the base and comparison revisions
and a destination for the marked
up result.

To best envision how the engine
will work you should open two
small text files on your desktop
and place them side by side. With
the base revision on the left high-
light the first line. Next, delete any
blank lines from the top of the com-
parison revision. Now look
through the comparison revision
one line at a time. If the line doesn’t
exist it has clearly been deleted
from the base revision. If the line is
at the top of the comparison revi-
sion then the line exists and is
unchanged. Finally, if the line
exists anywhere but the top then
the intervening lines have been
added to the base revision. Finally,
repeat this procedure for all the
lines in the base revision.

Creating a method to perform
this search is straightforward. The
function Found in Listing 2 first sets
Result to -1, the state where no
matching line is found. Then we
search all the lines in the compari-
son revision. If we find a match in
the top position we set Result to 0
and Break the loop. If we find a

July 1999 The Delphi Magazine 23

procedure TCGI.LoadMultiCGIUserData;
{ Reads, parses, and decodes values for the standard CGI
form variables in a multipart form. }

const
Eom: boolean = false;
FileCounter: integer = 0;

var
ContentLength: LongInt;
InputFCB: File;
RequestMethod: string;
S: string;
LabelStr: String;
LastLabelStr: String;
ValueStr: String;
Buffer: array of char;
AttachStream: TMemoryStream;
UniqueFileName: string;
function read1ln(var Value: string): integer;
begin
Result := SearchBuf(#13#10,Buffer[0],ContentLength)+2;
SetLength(Value, Result);
Move(Buffer[0], Value[1], Result);
Move(Buffer[Result], Buffer[0], Length(Buffer)-Result);

end;
function readAttachment: integer;
begin
Result := SearchBuf(#13#10'--'+
CGIItems.Values['CONTENT BOUNDARY'],
Buffer[0], ContentLength);

AttachStream.Write(Buffer[0], Result);
Move(Buffer[Result], Buffer[0], Length(Buffer)-Result);

end;
begin
RequestMethod :=
Uppercase(FCGIItems.Values['REQUEST METHOD']);

if RequestMethod = 'POST' then begin
if FCGIItems.Values['CONTENT TYPE'] <> '' then begin
ContentLength :=
StrToInt(FCGIItems.Values['CONTENT LENGTH']);

AssignFile(InputFCB, ''); { standard input }
Reset(InputFCB, 1);
try
SetLength(Buffer, ContentLength);
BlockRead(InputFCB, Buffer[0], ContentLength);
while not Eom do begin
read1ln(S); // read a line
if S <> #13#10 then begin
while true do begin
if Pos('Content-Disposition', S) <> 0
then begin
// delete to first "
System.Delete(S, 1, Pos('"', S));
LabelStr := System.Copy(S, 1,
Pos('"', S)-1); // copy name

System.Delete(S, 1,
Pos('"', S)); // delete name

if Pos('FILENAME',
uppercase(S)) <> 0 then begin
LabelStr := UniqueLabelStr('FILENAME');
LastLabelStr := LabelStr;
// delete to filename
System.Delete(S, 1, Pos('"', S));
ValueStr := System.Copy(S, 1,
Pos('"', S)-1); // copy value

if ValueStr <> '' then begin
FFormItems.Values[LabelStr] := ValueStr;
LabelStr := '';
ValueStr := '';

end;
read1ln(S); // read another line
if Pos('Content-Type', S) <> 0 then begin
LabelStr :=
UniqueLabelStr('CONTENT-TYPE');

System.Delete(S, 1,
Pos(':', S)+1); // delete to :

ValueStr := System.Copy(S, 1,
Length(S)); // copy name

if ValueStr <> '' then begin
FFormItems.Values[LabelStr] :=
ValueStr;

LabelStr := '';
ValueStr := '';

end;
read1ln(S); // read another line

end;
if S = #13#10 then begin
// if there is content...
AttachStream := TMemoryStream.Create;
try
// copy to memory stream
readAttachment;
// create new file name
UniqueFileName := UpldrDir+
ChangeFileExt(ExtractFileName(
FFormItems.Values[LastLabelStr]),'')
+FloatToStr(TimeStampToMSecs(
DateTimeToTimeStamp(Time)))+
IntToStr(FileCounter)+
ExtractFileExt(
FFormItems.Values[LastLabelStr]);

// write file to disk
AttachStream.SaveToFile(
UniqueFileName);

// save temp file name as
// form variable
FFormItems.Values[UniqueLabelStr(
'TEMPFILE')] := UniqueFileName;

Inc(FileCounter);
finally
AttachStream.Free;

end;
end;

end;
Break;

end;
if Pos(CGIItems.Values['CONTENT BOUNDARY'], S)
<> 0 then begin
// remove first 2 chars
System.Delete(S, 1, 2);
// check for Eom
System.Delete(S, 1,
Length(CGIItems.Values[
'CONTENT BOUNDARY']));

if S = '--'#13#10 then
Eom := true;

Break;
end;
// append to valuestr
ValueStr := ValueStr + S;
// read another line
read1ln(S);

end;
end;
if ValueStr <> '' then begin
// remove CRLFs from the end
FFormItems.Values[LabelStr] :=
System.Copy(ValueStr, 1,
Length(ValueStr)-2);

LabelStr := '';
ValueStr := '';

end;
end;

finally
CloseFile(InputFCB);

end;
end;

end;
end;

function TCGI.UniqueLabelStr(Value: string): string;
var
Counter: integer;

begin
Result := Value;
Counter := 0;
while FFormItems.IndexOfName(Result) <> -1 do begin
Inc(Counter);
Result := Result+IntToStr(Counter);

end;
end;

match elsewhere we set Result to i
(the line number) and Break the
loop.

Next, we need a public routine to
generate the html result page. This
routine, which I have called Exe-
cute, iterates through the base
revision text file and calls Found for
every non-blank line. As you can
see from Listing 3, we examine the

result of Found inside a case state-
ment.

If Found returns -1 we mark up
the line as being deleted. If Found
returns 0 we copy the line
unchanged and remove any blank
lines from the top of the compari-
son revision. In the case Found
returns any other value we copy all
the lines in the comparison revi-
sion up to the match and mark
them as added.

After iterating through the base
revision, any lines left in the
comparison revision must have
been added. To add these lines to
the result page we call Dest.
AddStrings, after marking them as
added of course.

That completes our simple but
effective difference engine (you
can add to it if you wish). All we
need to do now is incorporate it
into a CGI web server application.

➤ Listing 1

24 The Delphi Magazine Issue 47

The Web Server Application
Figure 1 shows the form we’ll use to
submit our files for comparison.
There are two <INPUT TYPE=FILE>
elements and Submit and Reset but-
tons. There is also a hidden field
containing the url of this page so
we can return to it from the differ-
ence results. When you submit the
form the first file input will be
called FILEINPUT and the second
will be called FILEINPUT1. The
uploaded files will be TEMPFILE and
TEMPFILE1.

The first thing the application
must do is copy the required form
variables into local variables for
speed and convenience. Next, we
must validate the user entry. Here
we check to see if files of the right
type have been submitted cor-
rectly. If this is not the case, an
exception is raised.

It’s important to note here that
the entire application is effectively
inside a try...finally block. In
case of any exception, whether
raised in the user validation or
elsewhere, the uploaded files will
be deleted. Remember that it is the
responsibility of the calling
application to clean up.

After validating entries we run
the difference engine. First we
create three TStringLists, one
each for the base and comparison
revisions and one for the marked
up result page. Then we load the
submitted files from disk.

procedure TDifference.Execute;
var
i, j: integer;
Line: integer;

begin
Dest.Add('<PRE>');
for i := 0 to Source.Count-1 do begin
if source[i] <> '' then
case Found(Source[i]) of
// doesn't exist so mark deleted
-1 : Dest.Add('<U>'+ Source[i]+'</U>');
0 : begin

// exists at top so copy unmarked, remove found()
Dest.Add(Source[i]);
Comp.Delete(0);
RemoveLeadingBlanks;

end;
else
begin
// mark all lines up to found() as added: remove found()
Line := Found(Source[i]);
for j := 0 to Line-1 do
Dest.Add('<U><I>'+Comp[j]+'</I></U>');

Dest.Add(Comp[Line]);
for j := 0 to Line do
Comp.Delete(0);

RemoveLeadingBlanks;
end;

end;
else
Dest.Add(Source[i]);

end;
// add any remaining lines from Comp - mark as added
if Dest.Count <> 0 then begin
Dest.Add('<U><I>');
Dest.AddStrings(Comp);
Dest.Add('</I></U>');

end;
Dest.Add('</PRE>');

end;

➤ Listing 2

We then create an instance of
TDifference with the three string
lists as parameters and call Exe-
cute. Finally, we construct the
return web page using writeln
calls. Listing 4 shows the complete
code for the difference utility
application.

If you compile the utility and
copy it into the cgi-bin directory of
your web server you should be
able to submit two text files and
see the difference page returned to
you. Figure 2 shows the result page
of a pair of similar text files submit-
ted to the application. Note that
files must have a MIME type of
text/plain or text/html. You can
add or change MIME types from
your File types tab in Internet
Explorer’s Options property page.

➤ Figure 1

function TDifference.Found(Value: string): integer;
var
i: integer;
S: string;

begin
Result := -1; // assume not found
for i := 0 to Comp.Count-1 do begin
S := Comp[i];
if S <> '' then
if CompareStr(Value, S) = 0 then begin
if i = 0 then
Result := 0

else
Result := i;

Break;
end;

end;
end;

➤ Listing 3

26 The Delphi Magazine Issue 47

Conclusions
We have extended the capabilities
of the TCGI component to handle
files submitted from an upload
capable browser. As a side effect
we have a mechanism to handle
multiple form variables with the
same name, a useful addition in
itself.

Using these new capabilities we
have created a simple but useful
text file difference utility. More
importantly, though, we can now
explore the myriad possibilities
that file uploading creates, on the
web, on our intranets and on
standalone PCs too.

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia, Canada
and can be contacted at
hg_soft@uniserve.com

program differ;
{$APPTYPE CONSOLE}
uses
SysUtils,
CGIAPI,
Classes,
FileCtrl,
DiffEng in '..\..\Tools\DiffEng.pas';

var
FileName: string;
TempFile: string;
FileType: string;
FileName1: string;
TempFile1: string;
FileType1: string;
ReturnUrl: string;
A: array[0..100] of char;
DifEng: TDifference;
SSource, SComp,
SDest: TStringList;
i: integer;

procedure Error(ErrorStr: string);
begin
writeln('content-type: text/html'#13#10#13#10);
writeln(ErrorStr);

end;
begin
try
with CGI do begin
// get required variables for first file
FileName :=
ExtractFileName(FormItems.Values['FILENAME']);

TempFile := FormItems.Values['TEMPFILE'];
FileType := FormItems.Values['CONTENT-TYPE'];
// get required variables for second file
FileName1 :=
ExtractFileName(FormItems.Values['FILENAME1']);

TempFile1 := FormItems.Values['TEMPFILE1'];
FileType1 := FormItems.Values['CONTENT-TYPE1'];
ReturnUrl := FormItems.Values['RETURN_URL'];

end;
// validate user entries
if (FileName = '') or (TempFile = '') then begin
Error('');
raise EAbort.Create('File 1 not submitted correctly');

end;
if (FileName1 = '') or (TempFile1 = '') then begin
Error('');
raise EAbort.Create('File 2 not submitted correctly');

end;
if (Pos('text', FileType) = 0) or
(Pos('text', FileType1) = 0) then begin
Error('');
raise EAbort.Create('Files must be of type text');

end;
// run difference engine on the 2 temp files
try

SSource := TStringList.Create;
SComp := TStringList.Create;
SDest := TStringList.Create;
try
SSource.LoadFromFile(TempFile);
SComp.LoadFromFile(TempFile1);
DifEng := TDifference.Create(SSource, SComp, SDest);
try
DifEng.Execute;
// create and display response page
writeln('content-type: text/html'#13#10#13#10);
writeln('<HTML>');
writeln('<HEAD><TITLE>>Text File Difference‘+
‘ Results</TITLE>');

writeln('<META NAME="GENERATOR"’+
‘ CONTENT="Generated by HomeGrown Text File’+
‘ Difference Engine">');

writeln('</HEAD>');
writeln('<BODY BGCOLOR="#FFFFFF">');
writeln('<BODY>');
writeln('<H1>Text File Difference Results</H1>');
writeln('<HR SIZE=2>');
writeln('Difference results for ’+
ExtractFileName(Filename)+
' compared to '+
ExtractFileName(FileName1)+'.');

writeln('<P>Legend: Same in both’+
‘ revisions --- '+
‘<U>Deleted from base revision</U>'+
' --- <FONTCOLOR=BROWN><U><I>’+
‘Added to base revision</I></U>');

writeln('<HR SIZE=2>');
for i := 0 to SDest.Count-1 do
writeln(SDest[i]);

writeln('<HR SIZE=2>');
writeln('<A HREF="'+ReturnUrl+
'">Return to referring page');

writeln('<HR SIZE=2>');
writeln('Generated by: HomeGrown''s Text’+
‘File Difference Engine v1.0');

writeln('</BODY></HTML>');
finally
DifEng.Free;

end;
finally
SSource.Free;
SComp.Free;
SDest.Free;

end;
except
Error('');

end;
finally
// always delete TempFiles
DeleteFile(StrPCopy(A, TempFile));
DeleteFile(StrPCopy(A, TempFile1));

end;
end.

➤ Listing 4
➤ Figure 2

	Extending TCGI Further
	The Difference Engine
	A Word About Infranets
	The Web Server Application
	Conclusions

